Alcohol and portal hypertension

Portal Hypertension Session Moderated by Prof J Bosch

> Susana G. Rodrigues UVCM, Inselspital, Bern DBMR, University of Bern 23.03.2023

HÔPITAL UNIVERSITAIRE DE BERNE | Viszerale Chirurgie und Medizin

UNIVERSITÄT

MECHANISMS

Mechanisms of portal hypertension (PH)

Time	Paradigm	Therapeutic applications					
Past (from Hippocrates to Child)	Congestion (↑ resistance, ↓ blood flow)	Established Surgical portal-systemic shunt	Non-established				
Present 1980s	Hyperdynamic circulation	Splanchnic vasoconstrictors (vasopressin, somatostatin and its derivatives) Non-selective beta-blockers					
1985	Increased hepatic vascular tone	Vasodilating nitrates (combined with vasoconstrictors/beta-blockers)					
1998	Mechanism of sinusoidal endothelial dysfunction		NOS-gene transfer, antioxidants statins, BH ₄				
2000	Reversal of fibrosis/cirrhosis	Etiologic treatments	Antifibrotic drugs				
2004	Angiogenesis		Antiangiogenic drugs Modulation of endogenous anti- angiogenic factors				
2008	Intrahepatic vascular occlusion and parenchymal extinction lesions		Anticoagulation				
2000-14	Bacterial translocation/inflammation/ altered microbioma as factors worsening PH		Antibiotics, probiotics				

Mechanisms of portal hypertension

Adapted from Bosch ILC- EASL 2017 & Gracia-Sancho, Laleman, Clin Liver Dis 2016

Pathobiology of the hepatic sinusoids

Diminished production of, NO, produced by endothelial NO synthase (eNOS)

Microthrombi within the sinusoids \rightarrow increased intrahepatic resistance liver injury and fibrosis development

ET-1 and NO, regulate hepatic vascular tone in the presence of ethanol

Angiocrine signalling: angiogenic endothelial cells may stimulate HSC activation

Capillarization; early fibrosis. Early role in liver injury and fibrosis

Toll-like receptor 4 (TLR4) \rightarrow hepatic stellate cell activation, key for sinusoidal constriction and deposition of matrix protein

> Ethanol & acetyladehyde→ MEOS produced free radicals of lipid aldehydes→ fibrotic extracellular matrix

Matrix proteins by HSC \rightarrow increased intrahepatic resistance through the mechanical effects of the matrix and signalling actions

Pathobiology of the hepatic sinusoids

Gut-liver axis in ALD & portal hypertension

 Alcohol damages tight junction integrity in the distal epithelium →increased gut permeability → leads to increased levels of bacterial lipopolysaccharide in intestinal venous circulation→ portal vein

• Secreted bile acids modified by the intestinal microbiota \rightarrow decreased FXR stimulation which may increase the contractility of HSCs \rightarrow PH

• Specific microbial members may aggravate hepatic Inflammation→ hepatic resistance.

Verbeke et al. Hepatol 2014 Ubeda et al. J Hepatol 2016 Munoz et al. Hepatol 2019 Schierwagen et al. Gut 2019

Gut-liver axis in ALD & portal hypertension

HEMODYNAMICS

Specificities of PH hemodynamics in ALD

Table 1 Portal-hepatic hemodynamics in alcohol-related and viral cirrhosis							
	Alcohol-related cirrhosis	Viral cirrhosis					
Increase in intrahepatic resistance	Increase in sinusoidal and postsinusoidal resistance						
Portal pressure	Higher increase in sinusoidal pressure	Lower increase in sinusoidal pressure					
Hepatic venous pressure gradient	Accurately reflects portal pressure	Less accurately reflects portal pressure					
Portal perfusion of the liver per gram of tissue in Higher reduction		Lower reduction					
end-stage liver disease							
Reversal portal blood flow	More common	Rare					
Patent paraumbilical vein	More common	Less common					
Hyperdynamic circulation	circulation More pronounced						

Bolognesi et al World J Gastroenterol 2014 Pomier-Layrargues et al. Hepatology 1985 Thalheimer et al. Dig Liver Dis 2005

 Hepatocyte swelling, a characteristic of ALD observed after the acute administration of alcohol, role in acute increase in intrahepatic resistance?

Wondergem et al. Alcohol Clin Exp Res 1994

 Role of alcohol-related cardiomyopathy in the progression of hemodynamic changes → PH?

- 16 patients alcohol-related cirrhosis and PH
- At 15 minutes, ethanol increases PP and azygos flow (index of flow through PS shunts), worsening PH syndrome
- No increase in hepatic blood flow → possibly due to flow through PS collaterals
- Increase in HVPG without increase in blood flow → due to increase in hepatic resistance

Luca et al. Gastro 1997

HVPG in Alcohol-related hepatitis

- Early measurement of HVPG provides important prognostic information on the short-term outcome (in hospital mortality) of patients with severe AAH.
- Cut-off: HVPG 22 mmHg

STAGING & MANAGEMENT

Baveno VII shifts in paradigm

Elastography cut-offs for ArLD for CSPH

Table 2 Sensitivity and specificity for CSPH and SPH in each included study.

	cut-off value for CSPH	sensitivity	specificity	cut-off value for SPH	sensitivity	specificity
Kumar	21.8 kPa	0.88 (0.80-0.94)	0.50 (0.19–0.81)	29.1 kPa	0.81 (0.71–0.88)	0.58 (0.28-0.85)
Zykus	21.8 kPa	0.88 (0.62-0.98)	1.00 (0.29–1.00)	29.1 kPa	0.86 (0.57-0.98)	0.80 (0.28-0.99)
Schwabl	21.8 kPa	0.90 (0.68–0.99)	0.86 (0.57-0.98)	29.1 kPa	0.83 (0.59-0.96)	0.81 (0.54-0.96)
Kitson	21.8 kPa	0.88 (0.71-0.96)	0.86 (0.42-1.00)	29.1 kPa	0.89 (0.71-0.98)	0.67 (0.35-0.90)
Hong	21.8 kPa	0.82 (0.67-0.93)	0.74 (0.49-0.91)	29.1 kPa	0.81 (0.63-0.93)	0.81 (0.58-0.95)
Reiberger	19.0 kPa	0.89 (0.83-0.94)	0.73 (0.60-0.83)	23.0 kPa	0.91 (0.85-0.95)	0.77 (0.66–0.85)
Lemoine	21.8 kPa	0.98 (0.87-1.00)	0.50 (0.16-0.84)	29.1 kPa	0.93 (0.80-0.98)	0.63 (0.24–0.91)
Bureau	21.8 kPa	0.98 (0.88-1.00)	0.67 (0.30-0.93)	29.1 kPa	0.95 (0.84-0.99)	0.67 (0.28-0.85)
Cho	21.8 kPa	0.73 (0.63-0.81)	0.70 (0.61–0.79)	-		

► Table 3 Summary of diagnostic characteristics for CSPH and SPH.

	cut-off value	sensitivity	specificity	LR+	LR-	DOR	AUROC	pre-test probability	post-test probability (test positive)	post-test probability (test negative)
CSPH	21.8 kPa	0.89 (95 % Cl, 0.83–0.93)	0.71 (95 % Cl, 0.64–0.78)	3.1 (95 %Cl, 2.4–4.0)	0.15 (95 % Cl, 0.10-0.24)	20 (95 %Cl, 12-35)	0.77 (95 %Cl, 0.73-0.81)	0.50 0.70 0.90	0.76 0.88 0.97	0.13 0.26 0.58
SPH	29.1 kPa	0.88 (95 % Cl, 0.83-0.92)	0.74 (95 % Cl, 0.67–0.81)	3.4 (95 %Cl, 2.6-4.5)	0.16 (95 % Cl, 0.11-0.23)	21 (95 %CI, 12-37)	0.80 (95 %Cl, 0.76-0.83)	0.50	0.77	0.14
								0.70	0.89	0.27
								0.90	0.97	0.59

Alcohol abstinence and portal hypertension

- Improvement in Child Pugh Score
- Ascites was absent in 16 of the 21 abstainers and 1 of the 9 non-abstainers; (P. 0.01).

- Difference in the mean HVPG between abstainers and non-abstainers: (-15.9% ± 3.5% vs. 18.4% ± 5.7%, respectively)
- Survival was greater for abstainers than for nonabstainers (P < 0.05) (better in Child A vs Child B/C patients)

Figure 4. Probability of remaining free of bleeding according to alcohol intake status.

Abstinence decreases decompensation

- 75.3% patients with CSPH abstinent
- Abstinence reduced risk of decompensation (aHR, 0.391; P < .001), as well as liver-related (aHR, 0.428; P < .001) and all-cause (aHR, 0.453; P < .001) mortality
- Abstinence reduced cumulative incidence of decompensation in HVPG 10–19 mm Hg (P < .001) and HVPG ≥20 mm Hg (P = .002).
- 3-year decompensation probability was 32.4% vs 60.0% in HVPG 10–19 mm Hg and 57.5% vs 82.6% in HVPG ≥ 20 mm Hg for abstinent patients vs active drinkers, respectively

Beta-blockers: the cornerstone of PH therapy

Decompensation with liver transplant and death as competing events

Random effects models. Group effect p = 0.0173

Descriptive statistics for control and carvedilol are events(competing-events)/n [person-years]

Heterogeneity: Q = 0.67 (df = 3, p = 0.8802), I²: 0.0% [0.0%-31.5%]

Death with liver transplant as a competing event

Random effects models. Group effect p = 0.0250

Descriptive statistics for control and carvedilol are events(competing-events)/n [person-years] Heterogeneity: Q = 0.12 (df =3, p = 0.9898), l²: 0.0% [0.0%-0.0%]

Start NSBB as soon as CSPH is diagnosed

- Treatment with non-selective beta-blockers (NSBBs) (propranolol, nadolol or carvedilol) should be considered for the prevention of decompensation in patients with CSPH (B.1).
- NITs can be used to identify patients with CSPH and high risk of decompensation, and to start NSBBs.
- Carvedilol is the preferred NSBB in compensated cirrhosis, since it is more effective in reducing HVPG (A.1), has a tendency towards greater benefit to prevent decompensation and towards better tolerance and has shown an improvement in survival compared to no active therapy in compensated patients with CSPH.
- Patients on NSBBs to prevent decompensation should not receive endoscopy, since this would have no impact on their clinical management (B.2).

Baveno VII Criteria

Semmler et al. J Hepatol 2022

Nutrition in advanced ALD with PH: Cirrhosis

- · Sarcopenia and malnutrition should be screened
- Optimal daily energy: 35 kcal/kg
- Optimal daily protein intake should not be lower than the recommended 1.2-1.5 g/kg. actual BW/d
- Oral supplements or enteral nutrition
- Administer micronutrients and vitamins if suspected or confirmed deficiency Thiamine (B1), pyridoxine (B6), folate (B9), cobalamin (B12), Zinc, Vitamin D

EASL CPGs Nutrition J Hep 2018

	Experim	Experimental Control		rol	Risk ratio			Risk	ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Rando	om, 95% Cl
Calvey 1985	9	21	7	22	7.6%	1.35 [0.61, 2.96]	1985	-	-
Naveau 1986	1	20	1	20	0.6%	1.00 [0.07, 14.90]	1986		
Achord 1987	1	19	0	21	0.5%	3.30 [0.14, 76.46]	1987		
Simon 1988	3	16	2	18	1.7%	1.69 [0.32, 8.85]	1988		•
Bunout 1989	2	17	5	19	2.1%	0.45 [0.10, 2.01]	1989		
Cabre 1990	2	16	9	19	2.5%	0.26 [0.07, 1.05]	1990		
Kearns 1992	5	16	5	15	4.5%	0.94 [0.34, 2.60]	1992		
Hirsch 1993	3	26	6	25	2.9%	0.48 [0.13, 1.72]	1993		_
De Ledinghen 1997	3	12	2	10	1.9%	1.25 [0.26, 6.07]	1997		
Cornu 2000	2	42	7	40	2.1%	0.27 [0.06, 1.23]	2000		
Hu 2003	0	40	1	30	0.5%	0.25 [0.01, 5.98]	2003	· · · · ·	
Sorrentino 2012	24	40	33	40	55.8%	0.73 [0.54, 0.97]	2012		
Dupont 2012	17	44	19	55	17.4%	1.12 [0.66, 1.88]	2012	-	-
Total (95% CI)		329		334	100.0%	0.80 [0.64, 0.99]		•	
Total events	72		97						
Heterogeneity: $\tau^2 = 0$.	00; $\chi^2 = 1$	L1.84, d	f = 12 (P	? = 0.46	5); $I^2 = 0\%$	6		⊢	
Test for overall effect:	Z = 2.02	(P = 0.)	04)					0.01 0.1 1	10 100
								Favours experimental	Favours control

- Reduced mortality 0.80 (95% CI, 0.64 to 0.99).
- Prevented overt hepatic encephalopathy (0.73; 95% CI, 0.55 to 0.96)
- Prevented infection (0.66; 95% CI, 0.45 to 0.98, respectively)

Nutrition in advanced ALD with PH: Alcohol-related Hepatitis

Enteral feeding tube was withdrawn prematurely from 48.5%

Fecal microbiota transplantation & ALD with portal hypertension

Philips et al. J CLIN AND EXP HEP 2022

AUD treatment in ALD

Drug	Approved Country	Mechanism of action	Dose	Available data on efficacy and safety in AUD patients with ALD	Main side effects	
ACAMPROSATE	US and EU	Glutamate receptor modulation	1.3 g/day (weight < 60 kg) and 2 g/day (weight > 60 kg) in three daily administrations	Only one day administration study in Child A-B liver cirrhosis	Diarrhea	
BACLOFEN	France	GABA-B agonist	10 mg t.i.d. in patients with liver disease	In Child A-C liver cirrhosis	Sedation with high doses, hypotonia	
DISULFIRAM	US and EU	Inhibitor of aldehyde dehydrogenase	800-1200 mg/day for 3-4 days, then 400 mg/day until the 7 th day, after 200 mg/day	NO	Hepatotoxicity (particularly in patients with liver disease), sleepiness, headache	
NALMEFENE	SOL	Selective opioid receptor ligand with antagonist activity at the μ and δ receptors and partial agonist activity at the κ receptor	18 mg per day "on demand"	NO	Insomnia, Headache, Nausea	
NALTREXONE	US and EU	Opiate antagonist with the highest affinity for the µ receptor	50-100 mg/day	NO	Headache, sedation, nausea/vomiting	
SODIUM OXIBATE (GHB)	Italy Austria Kazakhstan	GABA-B/ GHB receptor agonist	50 mg/kg divided into three or six daily administrations	Only one case report (see ref 99)	Dizziness, headache, nausea, vertigo	

Therapy targets for portal hypertension

Rodrigues et al. Expert Opin Investig Drugs 2022