

A Randomized Trial of Albumin Infusions in Hospitalized Patients with Cirrhosis

China, Louise, et al., New England Journal of Medicine 384.9 (2021): 808-817.

Hepatology Journal Club, 27 May 2021, presented by Christina Schramm

The ATTIRE* Trial - Outline

- Research Question and Motivation
- Trial Design
- Results
- Discussion
- Conclusion

* Albumin To prevenT Infection in chronic liveR failurE

Research Question / Motivation I

- Liver disease as leading cause of death in adults 35 to 49 years of age in England
- Decompensated cirrhosis associated with high risk of infections, kidney failure and death
- **International Guidelines (EASL)** recommend usage of human albumin solution in patients with spontaneous bacterial peritonitis (SBP) and hepatorenal syndrome (HRS)
- Preclinical studies showed anti-inflammatory effect of albumin in patients with cirrhosis, ...
 - ... but: **clinical trials** showed **conflicting results** (SBP vs other infections, lethal pulmonary edema),
 - meta-analyses did not find increased survival due to albumin in HRS patients/patients after large-volume paracentesis (LVP)
 - Also: **inconsistency** concerning the application interval (weekly vs less often)

Research Question / Motivation II

- ⇒ **Large** trials to address the usefulness of albumin in **preventing** infection, kidney dysfunction, and death in hospitalized patients are lacking.
- Does **targeting** an increase in the **serum albumin level to ≥30g/I** with the use of repeated daily infusions of 20% human albumin solution, as compared with standard care, **reduce** the incidences of
- infection,

kidney dysfunction,

and death

among hospitalized patients with **decompensated cirrhosis**?

ATTIRE – Trial Design I

- Prospective
- Interventional
- Multi-center: 35 hospitals in England, Scotland, and Wales
- Randomized: minimization biased coin algorithm; assignment balanced on center location, MELD score, number of organ dysfunctions, use of antibiotics, serum albumin level
- Open-label

ATTIRE – Trial Design II

Sample:

- ≥18 years
- Hospitalized with acute complications of decompensated liver cirrhosis
- Serum albumin ≤30g/l within 72 hours after hospital admission
- Anticipated length of hospital stay of ≥5 days (clinical judgment)
- Recruitment between 15 January, 2016, and 28 June, 2019
- Exclusion criteria: Advanced HCC with life expectancy ≤8 weeks; palliative care

MINSELGRUPPE

Descriptives

Characteristic	Albumin Group (N = 380)	Standard-Care Group (N = 397)
Mean age — yr	53.8±10.6	53.8±10.7
Female sex — no. (%)	123 (32.4)	104 (26.2)
Admitted to ward — no. (%)	370 (97.4)	384 (96.7)
Admitted to intensive care unit — no. (%)	8 (2.1)	10 (2.5)
Cause of cirrhosis — no. (%)†		
Alcohol	347 (91.3)	350 (88.2)
Hepatitis C	24 (6.3)	35 (8.8)
Nonalcoholic fatty liver disease	26 (6.8)	29 (7.3)
Reason for admission — no. (%)†		
Encephalopathy	80 (21.1)	69 (17.4)
Suspected variceal bleed	52 (13.7)	63 (15.9)
New-onset or worsening ascites	236 (62.1)	281 (70.8)
Infection — no. (%)		
Diagnosis of infection at randomization by site medical team	98 (25.8)	113 (28.5)
Use of antibiotics	195 (51.3)	199 (50.1)
Serum albumin level — no. (%)		
<20 g/liter	61 (16.1)	60 (15.1)
20–25 g/liter	207 (54.5)	224 (56.4)
26–29 g/liter	112 (29.5)	113 (28.5)

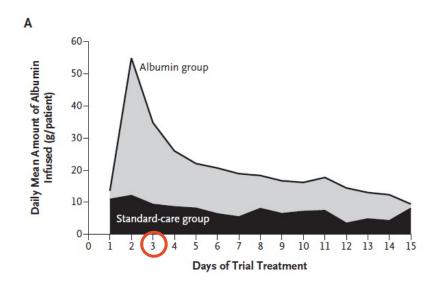
- 777 unique patients
- Liver disease most often alcohol-related
- 26.4% treated for alcohol withdrawal
- 24.9% with alcoholic hepatitis
- Mean entry albumin level of 23±3.7g/l

Table 1 from China, Louise, et al. "A randomized trial of albumin infusions in hospitalized patients with cirrhosis." New England Journal of Medicine 384.9 (2021): 808-817.

MINSELGRUPPE Descriptives

Physiological variable — median (IQR)		
Creatinine level — mg/dl	0.75 (0.58–0.97)	0.78 (0.64-1.06)
Bilirubin level — mg/dl	5.70 (2.75–10.47)	5.56 (2.63-9.68)
International normalized ratio	1.6 (1.4–1.9)	1.6 (1.4–1.9)
MELD score — median (IQR);	19.6 (15.4–22.9)	19.5 (15.4–23.4)
Baseline organ dysfunction — no. (%)		
Cerebral: grade III or higher hepatic encephalopathy	10 (2.6)	8 (2.0)
Circulatory: mean arterial pressure <60 mm Hg	10 (2.6)	6 (1.5)
Respiratory: Spo ₂ :Fio ₂ ratio		
Grade 0: >357	345 (90.8)	367 (92.4)
Grade 1: >214 to ≤357	29 (7.6)	23 (5.8)
Grade 2: ≤214 or mechanical ventilation	5 (1.3)	5 (1.3)
Renal: creatinine level ≥1.5 mg/dl	36 (9.5)	46 (11.6)

Table 1 from China, Louise, et al. "A randomized trial of albumin infusions in hospitalized patients with cirrhosis." New England Journal of Medicine 384.9 (2021): 808-817.


ATTIRE – Trial Design III

Intervention:

- Treatment: daily 20% human albumin solution (infused at a rate of 100 ml/h) from day 1 of recruitment, with a target level of ≥30 mg/l
 - Volume determined by initial serum albumin levels
 - Continuation even in case of nonfatal primary event
- Control: Standard medical care
 - Application of albumin according to guidelines (SBP, HRS, LVP)
- Infusion period: ≤14 days after randomization, or until (possible) discharge
 - No significant difference in the median number of days of hospitalization during the trial between groups: 8 days in the albumin group and 9 days in the standard-care group

Serum Albumin Infused (A) and Daily Serum Albumin Levels (B), Group Means

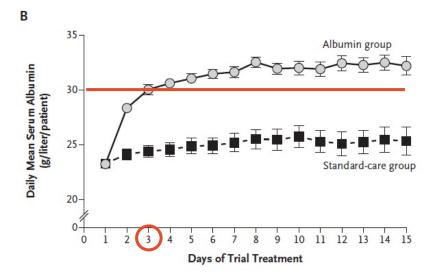


Figure 1 from China, Louise, et al. "A randomized trial of albumin infusions in hospitalized patients with cirrhosis." New England Journal of Medicine 384.9 (2021): 808-817.

MINSELGRUPPE


- Albumin group: Median of 200 g (IQR 140-280 g) of albumin per patient
- Standard care: Median of 20 g (IQR 0-120 g)
- 196/397 patients (49.4%) in the standard care group received no albumin
- Target level of ≥30g/l serum albumin reached between day 3 and 15 of trial (mean)

ATTIRE - Trial Design IV

Endpoints:

• **Primary**: composite of infection, kidney dysfunction, or death

adverse events

- Kidney dysfunction: serum creatinine level that was ≥50% higher than the level at randomization, or an increase in the serum creatinine level of ≥0.3 mg/dl/48h, or the initiation of renal-replacement therapy
- Between trial day 3 and 15, date of discharge, or date of being fit for discharge (if ≤15)
- Secondary:
 - Single components:

•	Death at 28 days, 3 months, 6 months;
	duration of hospitalization, number of ICU days,
	other organ dysfunctions, liver transplant within 6 months,
	MELD score, terlipressin use, hypotension, variceal bleeding, serious

ATTIRE – Trial Design V

Statistical Analysis

• **Logistic regression** ⇒ Odds Ratios

$$Logit(Endpoint_{ic} = 1|X = x_{ic}) = \beta T_{ic} + \delta X_{ic} + \gamma_c$$

Reads as: The probability that the endpoint is

reached for patient i treated in hospital c

who has covariates x (sex, age,...) ...

... as a function of the **binary treatment variable T**, the covariates X, and a fixed effect γ for hospital c.

 $\rightarrow \beta > 0$ means that a patient in the treatment group has a higher probability of an endpoint event than in the control group.

- **Time-to-Event Analysis** ⇒ Hazard Ratios
- Intention-to-treat analysis

Results I – Primary Endpoint

Variable	Albumin Group (N = 380)	Standard-Care Group (N = 397)	Adjusted Odds Ratio (95% CI)†	P Value
Composite primary end point — no. (%)	113 (29.7)	120 (30.2)	0.98 (0.71-1.33)	0.87
Components of composite primary end point — no. (%)‡				
Incidence of new infection	79 (20.8)	71 (17.9)	1.22 (0.85-1.75)	
Incidence of kidney dysfunction	40 (10.5)	57 (14.4)	0.68 (0.44-1.11)	
Incidence of death	30 (7.9)	33 (8.3)	0.95 (0.56-1.59)	
Death at 28 days	53 (14.0)	62 (15.6)	0.86 (0.57-1.30)	
Death at 3 mo	92 (24.2)	93 (23.4)	1.05 (0.74-1.48)	
Death at 6 mo	132 (34.7)	119 (30.0)	1.27 (0.93-1.73)	

- No significant difference between the groups in the regression analysis
- No significant difference between the groups in time-to-event analysis (hazard ratios)
- Holds in subgroup analyses (e.g., antibiotics, reason for admission)

Table 2 from China, Louise, et al (2021).

Results II – Secondary Endpoint

Variable	Albumin Group (N = 380)	Standard-Care Group (N = 397)	Adjusted Odds Ratio (95% CI)†	P Value
Composite primary end point — no. (%)	113 (29.7)	120 (30.2)	0.98 (0.71-1.33)	0.87
Components of composite primary end point — no. (%)‡				
Incidence of new infection	79 (20.8)	71 (17.9)	1.22 (0.85-1.75)	
Incidence of kidney dysfunction	40 (10.5)	57 (14.4)	0.68 (0.44-1.11)	
Incidence of death	30 (7.9)	33 (8.3)	0.95 (0.56–1.59)	
Death at 28 days	53 (14.0)	62 (15.6)	0.86 (0.57-1.30)	
Death at 3 mo	92 (24.2)	93 (23.4)	1.05 (0.74–1.48)	
Death at 6 mo	132 (34.7)	119 (30.0)	1.27 (0.93-1.73)	

- No significant differences between the groups with respect to death and time to death
- No significant differences between the groups for other secondary outcomes

Table 2 from China, Louise, et al (2021).

Results III – Serious Adverse Events

Event	Albumin Group (N=380)	Standard-Care Group (N = 397)	All Patients (N=777)
All serious adverse events that included pulmonary edema or gastrointestinal bleeding:			
Any pulmonary edema or fluid overload	23	8	31
Any gastrointestinal bleeding	11	13	24

 More severe or life-threatening serious adverse events, especially pulmonary edema or fluid overload, in the albumin group than in the standard-care group

MINSELGRUPPE

Discussion

Limitations:

Not blinded: Feasibility? Bias?

Assets:

- Big sample size
- Multi-center
- Prospective
- Randomized

Extensions and open questions:

- Threshold of 30 g/l different target?
- Nature of the relationship between the amount of administered albumin and risk of adverse events? (Linearity vs exponential)
- External validity?
 - Alcohol vs other cases of cirrhosis?
 - Standard care in different countries (UK vs continental Europe)?
- Reasons for conflicting pre-clinical evidence?
- Statistical robustness checks different statistical models than logit model, covariates
- Cost-benefit analysis? Quality of life?

Conclusion

- The results of the ATTIRE trial do not favor targeted administration of albumin in patients with decompensated liver cirrhosis to prevent infection, kidney dysfunction, or death
- There was no evident benefit for patients in any subgroup and for any endpoint
- This finding differs from pre-clinical evidence and previous clinical studies
- Encourages a critical re-evaluation of the role of albumin infusions in patients with decompensated cirrhosis

Thank you!

Christina Schramm

christina.schramm@insel.ch

References

- China, Louise, et al. "A randomized trial of albumin infusions in hospitalized patients with cirrhosis." New England Journal of Medicine 384.9 (2021): 808-817.
- NEJM QuickTake Video: https://www.youtube.com/watch?v=5UxxAW9vdYI
- Public Health England. Liver disease: applying all our health. March 23, 2020.
 (https://www.gov.uk/government/publications/liver-disease-applying-all-our-health/liver-disease-applying-all-our-health#%20fn:1)
- EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. (https://www.journal-of-hepatology.eu/article/S0168-8278(18)31966-4/fulltext)

NEIM Quick Take